Post-Crash Analysis of the InnoTime
Application

by Nathan Chung

Introduction

During the release of a mandatory update for the InnoTime smartphone client application,
simultaneous database queries triggered by thousands of client instances crashed the database
and caused the clients to lock up. This document describes the technical background, the failure
incident, and the initial steps the teams took to remediate the problem. It concludes with future
steps to prevent similar problems.

Technical Background

The InnoTime smartphone client is a business application that retrieves data from a central
server. Whenever the client has a new update or is missing any required components, it
receives the download links from the server. The steps on how the InnoTime server generates
the links are as follows:
1. When the InnoTime server receives a download request from a client, it dynamically and
randomly generates the download link, making each link unique to each client instance.
2. The InnoTime server sends the new link to the client.
3. The InnoTime server inserts a new record containing the download link and its
generation time into a database table named Download_links.

The following diagram describes the above steps in a visual form:



Diagram 1: How the server generates and stores update
download links.

www.innotime.com/
randomlink02.apk

www.innotime.com/
randomlinkO1.apk

Database insert
operation

Generation
. time
www.innotime.com/ 10:02:11
randomlink01.apk

www.innotime.com/ 10:04:27
randomlink02.apk

Link

A row in the Settings database table defines the link expiration period in minutes. The Settings
table is composed of rows with two columns named Name and Value. Each row represents the
name and the value of a setting. The row for the link expiration period setting has the name
Download_link_expiration, and its value at the time of writing this document is set to 30 minutes.

When the client calls the server using the link, the server checks for the validity of the link with
the following steps:
1. The InnoTime server queries the Download_links table for a row that contains the same
link as the one sent by the InnoTime client.
2. If the query does not produce a match, the client’s link is invalid. The InnoTime server
refuses to transfer the update file.
3. If the query produces a match, the server looks at the link’s generation time in the
matching row.
4. If the link’s generation time is older than the value for Download_link_expiration, the
InnoTime server treats it as an expired link and refuses to transfer the update file.
5. If the link’s generation time is within the value for Download_link_expiration, the
InnoTime server will transfer the update file to the client.
Note that if the client has an invalid or expired link, the user has to get a new link by pressing
the Download buttons on the client again. If the client has a pending mandatory update, the user



would not be able to proceed past the update download screen until completing the mandatory
update.

How the Failure Occurred

On the morning of the crash, the development team released a new client update. Thousands of
clients attempted to download the update simultaneously, leading the server to make thousands
of queries to the Downloads_links table. Each query did a full scan of the Download_links table,
which contained hundreds of thousands of rows representing past downloads. Unable to handle
the load, the database crashed and prevented most of the client instances from successfully
downloading the mandatory update. Users were locked out of the clients due to the mandatory
update requirement. Even if the clients were able to successfully download and install the
update, they still would not have been able to connect to the InnoTime server due to the
database crash.

The database crash had two main factors: an overly broad query and the database team never
having cleaned the Download_links table since its creation. The full scan query for
Download_links was unnecessary since only links that were generated in the past 30 minutes
as defined by Download_link_expiration in the Settings table were valid.

A more significant problem was that the database team never cleaned the Download_links table
since its creation. When the development team first released InnoTime, the table was small
enough that simultaneous queries from many clients did not overload the database. With no
purging process in place, the table continuously grew.

Initial Remediate Step

The database team purged older rows with expired links from the Download_links table to
reduce the number of rows. On the server side, the development team deployed a quick and
temporary fix with potential problems as explained in the Future Steps section. In the Settings
table, the development team created a new row with the name Query _range and a value of 60
minutes. The development team then refined the database query for Download_links to only
look at rows created in the past Query_range minutes. With the fixes in place, the teams were
able to bring the application back online, and users were able to successfully update their
clients.

Future Steps

To prevent similar problems from occurring in the future, the database team and the
development team would need to perform a thoughtful analysis of how the client, server, and
database interact with each other. More specifically for the Download_links table, which was



one of the main factors for the incident, the database team can implement further improvements
such as:
1. Set up an automatic purging schedule for download links that have expired.
2. Partition the table based on days, so that the server only queries for the newest rows
that have not expired.

The development team created a potential technical debt by introducing a new setting named
Query_range into the Settings database table. The development team’s rationale for introducing
another setting was to “create a buffer and separate the business logic from the backend code.”
By creating two separate variables, the team intended to separate the code that queries the
Download_links table from the code that checks for the link expiration.

While the idea sounds good on the surface, it is flawed because the value of Query range
depends on the value of Download_link_expiration to avoid producing too little or too many
matches. If the development team decides to change the value of Download_link_expiration for
whatever reason, it would need to remember to manually update Query_range accordingly. The
team would likely benefit from having a discussion on whether introducing the new Query_range
setting was preferable to using the existing Download_link_expiration setting.



